STUDY OF ENHANCING CO-PRECIPITATION METHOD IN SYNTHESIS OF MAGNETITE NANOPARTICLES WITH ULTRASONIC-BASED ASSISTANCE

Bùi Quang Thành, Tôn Nữ Cẩm Sương

DOI: http://dx.doi.org/10.26459/hueuni-jns.v126i1C.4216

Abstract


In the present paper, the traditional co-precipitation method in synthesis of magnetite (Fe3O4) nanoparticles have been procedurally and ultrasonically altered. The effects of NH3 solution adding paths to precursor solution, and ultrasonic assistance were indicated and demonstrated through specific experiments, and suggested explanations for observed phenomena. Characteristic information has proved the enhanced performance of the alternative procedure, illustrated by archived magnetite nanoparticles as the product with uniform nano-crystallised spherical morphology, narrow small-size distribution (10 nm), high magnetisation (57.7 emu·g-1), and negligibly low coercivity (5 Oe).


References


Cao D., He P., Hu N., (2003), Electrochemical biosensors utilising electron transfer in heme proteins immobilised on Fe3O4 nanoparticles, Analyst., 128, 1268–74.

Dang F., Enomoto N., Hojo J., Enpuku K., (2010), Sonochemical coating of magnetite nanoparticles with silica, Ultrason. Sonochem., 17(1), 193–99.

DeNardo G.L., DeNardo S.J., (2008), Turning the heat on cancer, Cancer Biother Radiopharm, 23(6), 671–80.

Dunlop D.J., Özdemir Ö., (1997), Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, Cambridge, 131 pp.

Giustini A.J., Petryk A.A., Cassim S.M., Tate J.A., Baker I., Hoopes P.J., (2013), Magnetic nanoparticle hyperthermia in cancer treatment, Nano Life, 1, 1–23.

Harrison R.J., Dunin-Borkowski R.E., Putnis A., (2002), Direct imaging of nanoscale magnetic interactions in minerals, Proc. Natl. Acad. Sci. U. S. A., 99 (26), 16556–61.

Huang H.S., Hainfeld J.F., (2013), Intravenous magnetic nanoparticle cancer hyperthermia, Int. J. Nanomedicine, 8, 2521–32.

Jiang W., Lai K.L., Hu H., Zeng X.B., Lan F., (2011), The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system, J. Nanoparticle Res., 13(10), 5135–45.

Mascolo M.C., Pei Y., Ring T.A., (2013), Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases, Materials (Basel), 6(12), 5549–67.

McCabe W., Smith J., Harriott P., (1993), Unit Operations of Chemical Engineering, McGraw-Hill, New York, 884-899 pp.

Nyborg W.L., (1965), Acoustic streaming, Phys. Acoust., 2(Pt B), 265.

Patterson A.L., (1939), The Scherrer formula for X-ray particle size determination, Phys. Rev., 56(10), 978.

Revia R.A., Zhang M., (2016), Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances, Mater. Today, 19(3), 157–68.

Scherrer P., (1918), Göttinger nachrichten math, Phys., 2, 98–100.

Singh A.K., (2005), Advanced x-ray techniques in research and industry, IOS Press, Amsterdam.

Vikesland P., Rebodos R., Bottero J-Y., Rose J., Masion A., (2016), Aggregation and sedimentation of magnetite nanoparticle clusters, Environ. Sci. Nano., 3, 567–77.

Wasilewski P., Kletetschka G., (1999), Lodestone: Natures only permanent magnet‐what it is and how it gets charged, Geophys. Res. Lett., 26(15), 2275–78.

Wen B., Lampe J.N., Roberts A.G., Atkins W.M., Rodrigues A.D., Nelson S.D., (2007), Definitions and description of nonthermal mechanisms, J Ultrasound Med., 454(1), 42–54.

Woo K., Hong J., Choi S., Lee H., Ahn J., (2004), Easy synthesis and magnetic properties of iron oxide nanoparticles, Chem. Mater., 16(14), 2814–18.

Zhang Z., Zhou F., Lavernia E.J., (2003), On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction, Metall. Mater. Trans. a-Physical Metall. Mater. Sci., 34A(6), 1349–55.