Influence of phonon confinement on the optically detected electrophonon resonance linewidth in parabolic quantum wells

Nguyen Dinh Hien

DOI: http://dx.doi.org/10.26459/hueuni-jns.v126i1B.3963

Abstract


We investigate the influence of optical phonon confinement described by Huang-Zhu (HZ) model on the optically detected electrophonon resonance (ODEPR) effect and ODEPR linewidth (ODEPRLW) in parabolic quantum wells (PQW) by using the operator projection. The obtained numerical result for the GaAs/AlAs parabolic quantum well shows that the ODEPR linewidths depend on the well's confinement frequency. Besides, in the two cases of confined and bulk phonons, the linewidth (LW) increases with the increase of confinement frequency. Furthermore, in the large range of the confinement frequency, the influence of phonon confinement plays an important role and cannot be neglected in considering the ODEPR linewidth.

Full Text:

PDF

References


S. G. Yu, V. B. Pevzner, K. W. Kim, M. A. Stroscio, Phys. Rev. B 58 (1998) 3580.

S. C. Lee et al, Physica E 28 (2005) 402.

C. R. Bennett, K. Guven, B. Tanatar, Phys. Rev. B 57 (1998) 3994.

N. Nishiguchi, Phys. Rev. B 52 (1995) 5279.

A. Svizhenko, A. Balandin, S. Bandyopadhyay, M. A. Stroscio, Phys. Rev. B 57 (1998) 4687.

Zheng, M. Matsura, Phys. Rev. B 61 (2000) 12624.

B. K. Ridley, Phys. Rev. B 39 (1989) 5282.

Y. J. Cho, S. D. Choi, Phys. Rev. B 49 (1994) 14301.

H. N. Spector, J. Lee, P. Melman, Phys. Rev. B 34 (1986) 2554.

H. Weman, L. Sirigu, K. F. Karlsson, K. Leifer, A. Rudra, E. Kapon, Appl. Phys. Lett. 81 (2002) 2839.

C. Matthiesen, A. N. Vamivakas, M. Atatüre, Phys. Rev. Lett. 108 (2012) 093602.

S. Rudin, T. L. Reinecke, Phys. Rev. B 41 (1990) 7713.

J. S. Bhat, S. S. Kubakaddi, B. G. Mulimani, J. Appl. Phys. 72 (1992) 4966.

J. S. Bhat, S. B. Kapatkar, S. S. Kubakaddi, B. G. Mulimani, Phys. Status Solidi B 209

(1998) 37.

J. S. Bhat, B. G. Mulimani, S. S. Kubakaddi, Phys. Rev. B 49 (1994) 16459.

L. Dinh, H. V. Phuc, Superlattices Microstruct. 86 (2015) 111.

B.-H. Wei, C. S. Kim, Phys. Rev. B 58 (1998) 9623.

R. Zheng, M. Matsuura, Phys. Rev. B 61 (2000) 12624.

L. T. T. Phuong, H. V. Phuc, T. C. Phong, Physica E 56 (2014) 102.

T. C. Phong, L. T. T. Phuong, N. D. Hien, V. T. Lam, Physica E 71 (2015) 79.

H. V. Phuc, N. D. Hien, L. Dinh, T. C. Phong, Superlattices and Microstructures 94 (2016) 51.

T. C. Phong, H. V. Phuc, Mod. Phys. Lett. B 25 (2011) 1003.

T. C. Phong, L. T. T. Phuong, H. V. Phuc, Superlattices Microstruct. 52 (2012) 16.

L. T. T. Phuong, H. V. Phuc, T. C. Phong, Physica E 56 (2014) 102.

T. C. Phong, L. T. T. Phuong, H. V. Phuc, P. T. Vinh, J. Korean Phys. Soc. 62 (2013) 305.

J. S. Bhat, B. G. Mulimani, S. S. Kubakaddi, Phys. Rev. B 49 (1994) 16459.

K. Huang, B. Zhu, Phys. Rev. B 38 (1988) 13377.

N. L. Kang et al, J. Phys.: Condens. Matter 7 (1995) 8629.

M. Masale, N. C. Constantious, Phys. Rev. B 48 (1993) 11128.